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ABSTRACT 
AMUNDSEN, L., ARNTSEN, B. and MITTET, R. 1993. Depth imaging of offset vertical seismic 
profile data. Geophysical Prospecting 41, 1009-1031. 

Depth migration consists of two different steps: wavefield extrapolation and imaging. 
The wave propagation is firmly founded on a mathematical frame-work, and is simulated by 
solving different types of wave equations, dependent on the physical model under investiga- 
tion. In contrast, the imaging part of migration is usually based on ad hoc ‘principles’, rather 
than on a physical model with an associated mathematical expression. The imaging is usually 
performed using the U/D concept of Claerbout (1971), which states that reflectors exist at 
points in the subsurface where the first arrival of the downgoing wave is time-coincident with 
the upgoing wave. 

Inversion can, as with migration, be divided into the two steps of wavefield extrapolation 
and imaging. In contrast to the imaging principle in migration, imaging in inversion follows 
from the mathematical formulation of the problem. The image with respect to the bulk 
modulus (or velocity) perturbations is proportional to the correlation between the time deriv- 
atives of a forward-propagated field and a backward-propagated residual field (Lailly 1984; 
Tarantola 1984). 

We assume a physical model in which the wave propagation is governed by the 2D 
acoustic wave equation. The wave equation is solved numerically using an efficient finite- 
difference scheme, making simulations in realistically sized models feasible. The two imaging 
concepts of migration and inversion are tested and compared in depth imaging from a syn- 
thetic offset vertical seismic profile section. In order to test the velocity sensitivity of the 
algorithms, two erroneous input velocity models are tested. We find that the algorithm 
founded on inverse theory is less sensitive to velocity errors than depth migration using the 
more ad hoc U/D imaging principle. 

INTRODUCTION 
In recent years, offset vertical seismic profile (VSP) data have frequently been used 
to map the subsurface away from the borehole. The mapping may be achieved 
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through migration. Extrapolation methods for migration using VSP data have 
mainly been based on the Kirchhoff integral (Wiggins 1984; Wiggins and Levander 
1984; Keho 1984; Kohler and Koenig 1986; Dai and Kuo 1986; Hu and McMe- 
chan 1986; Dillon 1988; Dillon, Ahmed and Roberts 1988) or the finite-difference 
technique (Chang and McMechan 1986; Whitmore and Lines 1986). Miller, Orista- 
glio and Beylkin (1987) (see also Beylkin and Burridge 1990) presented generalized 
Radon transform (GRT) migration, which can handle any configuration of sources 
and geophones. GRT migration may be viewed as a weighted version of a gener- 
alized Kirchhoff migration technique (Dillon 1990). 

The reverse time finite-difference migration algorithms which have been in use 
are based on time-coincidence in space of upgoing and downgoing waves, and share 
the common idea that the downgoing source wavefield and the upgoing (reflected) 
receiver wavefield can be extrapolated independently. Chang and McMechan (1986) 
use the excitation-time imaging condition (each point in the image space has its own 
image time). Whitmore and Lines (1986) compute the reflectivity by correlating an 
incident and a reflected field normalized by the square of the incident field. The 
incident field is modelled using the acoustic wave equation with a constant specific 
impedance. The reflected field is produced by backward time propagation of the 
reflected part of the VSP data as a source in the wave equation with constant 
impedance. 

The mapping of reflectors in the subsurface from time measurements obtained in 
seismic experiments is an inverse problem. Therefore, it is possible, in the mapping, 
to utilize elements from the relationship between depth migration and non-linear 
inversion. Inversion can, as with migration, be divided into two different steps of 
wavefield extrapolation and imaging (Lailly 1984; Tarantola 1984). Considerable 
research has been concentrated on the wavefield extrapolation step of migration, 
and it relates closely to the extrapolation step of inversion. However, the imaging 
step of migration is usually based on ad hoc ‘principles’, whereas the imaging step 
deduced from inversion follows from the formulation of the problem. It may there- 
fore be interesting to replace the ad hoc imaging principles of migration with the 
better, theoretically founded, imaging equations of inversion. 

The main objective of this paper is to examine the sensitivity of the imaging 
algorithm rooted in the theory of acoustic inversion to velocity errors in the back- 
ground velocity model. We generate synthetic VSP data from a rather complicated 
geological structure and perturb the true velocity model in the target zone in two 
different ways to study the effects of velocity errors. We also compare this imaging 
concept to imaging in migration, that is, full wavefield extrapolation followed by 
application of the U/D imaging concept of Claerbout (1971). Both algorithms 
require a background velocity model, or ‘macromodel ’ (Berkhout 1986), above the 
target zone. 

The implementation of the migration algorithm based on the U/D imaging 
concept differs from the algorithms that have been published previously. In contrast 
to, for instance, Whitmore and Lines (1986), who perform two modelling operations 
in the depth imaging, we extrapolate the field at the receivers backwards in time, 
and at each lateral position we separate the wavefield into upgoing and downgoing 
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waves by a wavenumber-frequency filtering technique. From a computational point 
of view, this imaging only requires one wavefield simulation. Observe that the wave- 
field extrapolation requires, in principle, two boundary conditions. 

This paper is divided into six sections. We first introduce the notation used. The 
second section briefly reviews the forward modelling equations. Sections three and 
four consider depth imaging based on depth migration and inversion, respectively. 
In the two last sections the numerical results and conclusions are given. For com- 
pleteness, we derive several well-known equations in the appendices. In Appendix A 
the acoustic equations, the properties of the Green’s function, and closed-form inte- 
gral solutions of the scalar wave equation in terms of the Green’s function, are 
listed. In Appendix B we summarize some elements of the inversion theory given by 
Lailly (1984) and Tarantola (1984). 

NOTATION 

Let x be a shorthand notation for the Cartesian coordinates. In a seismic experi- 
ment x, denotes a shot position, and 5 denotes a receiver position on a surface S.  
We will distinguish between the two different surface integrals $s and Js. The first 
integral always designates a closed surface integral surrounding a volume V.  The 
second integral designates an integral along a part of the surface S.  

We use Einstein’s summation convention for the repeated Latin indices i and j .  
The index i may be 1, 2 or 3 representing the orthogonal coordinate directions xl, 
x2 and x3 (x, y and z), respectively. A spatial derivative is denoted ai and a temporal 
derivative a,. Then, when n, is component i of an outward-pointing unit vector 
orthogonal to the surface S bounding the volume V ,  normal derivative of a field 
I,&, t )  on S is denoted by n, aft,@, t). We use the shorthand notation af for indicat- 
ing that the derivative of a field is to be taken with respect to the coordinate 5 on S, 
that is 

ni aMC, t)  = niCai $(x, t ) Ix=t .  

FORWARD MODELLING 
We consider 2D wave propagation in a 2D acoustic medium characterized by the 
density p(x) and the bulk modulus M(x). The P-wave velocity is c(x) = ,/-. 
Given the source f(x, t), the pressure field p(x, t )  obeys the acoustic wave equation 
((A2a) in Appendix A) 

with given initial and boundary conditions. In a forward simulation of a seismic 
experiment the initial conditions are zero (A3), and the pressure field is zero at the 
earth‘s surface. We assume that the source term corresponds to an explosive point 
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source at location x, with time function s(t), that is 

1 
f(x, t) = -ai - did(X - x,)s(t). 

P(X) 
From (A15) it follows that the integral representation for the forward- 

propagated pressure, assuming homogeneous boundary conditions, can be 
expressed in terms of the Green’s function g as 

n 

where the time convolution (*) is defined in (A14). The equation (A5) determining 
the Green’s function is given in Appendix A. Equations (1) and (3) both give the 
solution of the forward problem. 

The integral representation of a differential equation with associated boundary 
conditions is often more amenable to mathematical manipulations than the differen- 
tial equation itself. However, we always perform the numerical computations using 
a finite-difference approximation to the differential equation corresponding to an 
integral equation. For details of the design of the finite-difference operators, see 
Holberg (1987). 

DEPTH I M A G I N G  BASED ON DEPTH MIGRATION 
The depth-migration problem is solved in two steps. First we extrapolate the mea- 
sured wavefield at the receivers into the medium. Then we image the extrapolated 
field at every point in a target zone. The extrapolated field is obtained by running 
the finite-difference algorithm with the time-reversed field as sources at the receiver 
locations. The imaging concept is intuitive, and states that reflectors exist at points 
in the subsurface where the first arrival of the downgoing wave is time-coincident 
with the upgoing wave (Claerbout 1971). The image function is defined as the zero- 
lag cross-correlation of the upgoing and the downgoing waves. 

Wavejield extrapolation 

The first step in depth migration is to reconstruct the wavefield at all times and 
all locations within the volume V to be imaged. It is well known (Morse and Fesh- 
bach 1953; Berkhout 1985) and it is shown by (A21) that the pressure can be synthe- 
sized by means of a monopole and a dipole distribution on the surface S, enclosing 
V. The strength of each monopole is given by the normal derivative of the pressure 
field on S.  The strength of each dipole is given by the pressure field on S.  Assuming 
that the source in the experiment is located outside V, the pressure at location (x, t) 
is given by the integral representation 

fix, t) = J-;v(x’)J(x, t I x’, 0) * [f‘”’(x’, t )  +ffd’(X’, t)], (44 
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r 

8 is the adjoint Green’s function and ni is component i of an outward-pointing unit 
vector orthogonal to the surface S bounding the volume I/. The adjoint Green’s 
function is defined in Appendix A. describes the same process as the Green’s 
function g, but in reverse time order, beginning with the final distribution and going 
backwards in time to the initial source. The time convolution (*) in (4a) for the 
time-reversed problem is defined in (A17). The pressure field is assumed to obey the 
final conditions (A4). 

Equation (4a) implies that the use of the scalar wave equation to extrapolate the 
wavefield backwards in time requires the specification of both the pressure and its 
normal derivative on S.  

As noted in the preceding section, the wavefield extrapolation is not performed 
using the explicit version of (4a), but by solving the corresponding differential equa- 
tion with source terms given in (4b) and (4c). In a real seismic experiment it is, of 
course, not possible to measure the pressure and its normal derivative on the whole 
of the closed surface S .  The data are only acquired on a part of S .  In this case the 
closed surface integrals OS should be replaced by integrals along a part of the 
surface, Js, In the numerical examples the acquisition surface is vertically plane (see 
Fig. 1). The lack of information on the full surface gives rise to spatial aperture 
effects (Wapenaar et al. 1989). 

Furthermore, in a VSP experiment it is common to record the particle velocities 
(that is, U, and U, in the 2D situation) in the well. Note that if also the pressure can 
be recorded at an upper depth level zo, it will be possible to reconstruct the total 
pressure field in the well from the U, component by integrating the equation of 
motion (Ala) in depth, i.e. 

P(X, Z, t )  = ~4x9 zo , t )  - 8, dCp(x, OU,(X, C, t). (5 )  I: 
The normal derivative of the pressure (in a vertical well) is of course found by taking 
the time derivative of the U, component multiplied by the density. Thus, in the 
acoustic approximation it should, in principle, be possible to gain information about 
the boundary conditions relevant for use in the scalar wave equation. The density in 
the borehole is assumed to be found from the density log. In the elastic situation it 
is, however, not possible to extract the tractions from the particle velocities. 

Imaging 
The basic model for using the U/D imaging concept of Claerbout (1971) is that 

the pressure wavefield can be decomposed into upgoing and downgoing waves. 
Thus, the separation of upgoing waves from downgoing waves is an essential step in 



1014 LASSE AMUNDSEN, BORGE ARNTSEN AND RUNE MITTET 

offset (km) 

n 0.C 

Y 

1: 0.5 

aJ 
U 

E 
v 

+ a. 

1.0 

1.5 

20 

2 5  

3.0 

3.5 

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 
I 1 I I I 

1480 4 s  

1995 

2135 

FIG. 1. The velocity model. The well position is at offset 0.0. The source is denoted by S and 
is located 2 km to the right of the well. 

the imaging algorithm. By isolating the two wavefields, their zero-lag cross- 
correlation can be computed to give information about the image. We use the veloc- 
ity filter approach as a method for separating the upgoing and downgoing waves 
(Treitel, Shanks and Frasier 1967). Related techniques have been used with good 
results (Seeman and Horowicz 1983; Suprajitno and Greenhalgh 1985). 

For every lateral position into the target zone, the extrapolated VSP record is 
transformed into the wavenumber-frequency (k ,  - f )  domain, where events can be 
identified according to their apparent phase velocities. A downgoing wave in k ,  - f 
space will be characterized as a mode with apparent vertical phase velocity 

Az f v =-=- 
app At k,' 
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An upgoing wave has opposite dip compared to a downgoing wave in z - t space, 
and so the phase velocity of the downgoing wave has a negative sign in k, - f space. 
Thus, the upgoing and the downgoing waves are separated into two different quad- 
rants of k, -f space. The ideal separation filter will be a zero-phase rectangular 
window which passes only positive or negative wavenumbers. In reality, the filter is 
gradually tapered in the cut-off area to avoid truncation effect. 

The most straightforward way to implement the U / D  image concept of Claer- 
bout (1971) is to compute the zero-lag cross-correlation of the upgoing and down- 
going waves in the frequency domain: 

where w = 27cf and wN = n/At is the Nyquist frequency. The asterisk (*) denotes a 
complex conjugate. Equation (7) is a stable approximation to a U / D  deconvolution 
algorithm, and corresponds to matched filtering. The cross-correlation procedure in 
(7) gives a more low-frequency imaging than the image obtainable using a U / D  
deconvolution algorithm. Note also that with this equation, the imaging function 
FM will be large where the illumination from the seismic experiment is good and 
small where the illumination is poor. An advantage of this imaging algorithm is that 
it does not require any forward-modelling step, and thus the source time function 
need not to be known. Naturally, this concept has several defects. For instance, 
diffractions are not correctly treated in the imaging. Also a false image is produced 
when the U- and D-waves are in-phase, but not on interfaces. However, these 
defects turn out to be of minor importance. For imaging transmission data, such as 
offset VSP data, it is the direct wave and its first reflections that give the main 
contribution to the image. In considering the application of this migration algo- 
rithm to real recorded data, the algorithm should be generalized to include elastic 
wave propagation effects. 

DEPTH I M A G I N G  BASED O N  NON-LINEAR I N V E R S I O N  

The goal of seismic inversion is to estimate earth parameters from measured seismic 
data. This is done formally by minimizing the least-squares objective function 

with respect to the model parameters m = [MT, pTIT. The objective function mea- 
sures, in a least-squares sense, the misfit Ap between the measured data (the seismic 
response of the medium) and the theoretically predicted data obtained from the 
solution of the wave equation for a given model. 

In the numerical examples we assume, for simplicity, that the density is constant. 
Then the objective function (8) is minimized with respect to the bulk modulus M 
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only. The model parameter updates are taken in the steepest descent direction 

AM(x)  = - ay,(x), (9) 
where a is a constant factor and yM(x) is the gradient of F. We only consider the first 
iteration in this iterative inversion scheme. 

Wavejield extrapolation 

show that the gradient of the objective function with respect to the bulk modulus is 
In Appendix B (equation (B12a), see also Lailly (1984) and Tarantola (1984)), we 

Here the wavefield p represents the forward-propagated predicted pressure field in 
the background model M(x), and is computed by solving the scalar wave equation 
(1) with zero initial conditions and the correct source function. The wavefield 4 is 
given by (see (Blla)) 

r 
&x, t) = J dV(x')& t 1 x', 0) * Af("')(x', t), 

V 

$(x, t )  = 0 t > T ,  

8,4(~ ,  t )  = 0 t > T. (1 14 
The time convolution (*) for the time-reversed problem is defined in (A17). Thus, 4 
is a residual wavefield, obtained by applying the difference between the predicted 
wavefield and the observed wavefield as a source term in the scalar wave equation 
running backwards in time. The source term consists of a distribution of monopole 
sources. 

in (1 la) represents the adjoint Green's function in the background 
model. This differs from migration, where the adjoint Green's function, in principle, 
should propagate in the exact or true medium, that is, in the same medium as the 
recorded wavefield. However, when the background model in migration is close to 
the true medium the adjoint Green's function describes the main propagation effects 
in the true medium. The scattering effects related to the differences in the back- 
ground and the true medium are ignored. In the case when the contrasts are signifi- 
cant, the migration should be iterative. 

Note that 

Imaging 
Our main interest is not to find an estimate of the bulk modulus (or velocity), 

instead we concentrate on the locations of the interfaces in the subsurface. Having 
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found the forward-propagated predicted pressure field p and the backward- 
propagated residual field +, we compute the correlation between their time deriv- 
atives to find where the background model should be modified. We then have the 
following imaging equation 

‘derived ’ from the theory of acoustic inversion. Compared to the imaging equation 
(7) for the migration problem we see that (12) contains two time derivatives. The 
effect of a time derivative is to enhance the high-frequency content in the image. 

Note that Y(x) is no longer an expression for the bulk modulus gradient. We 
have ignored the factor (- 1/M2(x)), as its effect is to enhance the background infor- 
mation in the image (unless it is constant, as in the frst numerical example). We will 
also apply a spatial filter C to Y. The filter removes the low vertical wavenumbers 
of the image, and is designed in the wavenumber domain. This means that only the 
high-frequency part of the model perturbations will be shown. The final inversion 
imaging equation is then 

FI(X) = Jyx’)c(x, x’)Y(x’). 

A fact that will complicate the use of this algorithm on real data, is that the 
source time function must be known. Furthermore, a modelling algorithm that 
includes elastic wave propagation effects and gives the correct 3D geometrical 
spreading should be used to simulate the VSP experiment correctly. 

NUMERICAL RESULTS 
We present depth imaging from a synthetic VSP section to see what information the 
algorithms can give about the geology of a fairly complicated structure. The model 
in Fig. 1 is an example of the geological structure of a North Sea reservoir, obtained 
by interpreting surface seismic data. The velocities are found from a calibrated bore- 
hole compensated sonic log in the area. Note that there is a negative velocity con- 
trast from layer five to layer six. The velocities in the two lowest layers are almost 
the same, thus we do not expect that their interface will be resolved in the imaging 
procedure. 

The model is approximately 3.8 x 3.8 km2 and is composed of faulted layers 
underlying horizontally layered structures. The source is located 2 km to the right of 
the well. The subsurface of interest for imaging is marked in Fig. 1 with a dashed 
line. The VSP data from this model are shown in Fig. 2. Due to the strong reverber- 
ations in the first layer we have zeroed the corresponding traces for scaling pur- 
poses. The record length is 4.1 s, the sampling interval in time is l ms, and the 
geophone (grid) spacing is 15 m. The source wavelet is assumed to be known in the 
inversion imaging; it has a dominant frequency of 30 Hz. 
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I 

FIG. 2. The reference VSP data corresponding to the velocity model in Fig. 1. Only every 
second trace is plotted. The first six traces are zeroed for scaling purposes. 

To test the sensitivity of the two imaging algorithms to errors in the velocity 
model, we conduct tests on the following models. 

1. We assume that the velocities in layer 1, 2, 3 and 4 are known, and in the rest of 
the layers we use the same velocities as in layer 4. That is, from a depth of 
approximately 2.1 km the velocity is constant. 

2. We assume a model consisting of plane horizontal layers, having the correct 
depth and velocities in the well position. Also in this example, the subsurface 
above the target zone is fully known. 

It is important that a good macromodel containing low wavenumber information in 
the velocity distribution is available above the target zone. Such a macromodel may 
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FIG. 3. Depth image using a background model with velocities constant from depth 2.1 km 
and below. The true model is superimposed. The reflector positions are marked with an 
arrow. (a) U / D  imaging; (b) inversion imaging. 
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be obtained using, for instance, traveltime tomography, and will eliminate the pro- 
pagation effects of the strong first arrival above the target. 

In Fig. 3 we show the results from the first test. The true interface positions are 
superimposed on this and the subsequent plots. The layer interfaces in the well are 
numbered and their positions marked with an arrow. The image using the U/D 
concept (Fig. 3a) is not comparable with the true structural trends. However, a rea- 
sonable image is obtained close to the well. As the field is extrapolated away from 
the well, the imaging gives reflector positions that are progressively more in error. 
The discrepancy between this depth image and the true depth image is due to the 
very large difference between the background model and the true model. 

The image obtained by using the true velocity model in the migration will of 
course be much better. In this case, as shown in Fig. 4, the greater part of the 
medium is recovered. The presence of the fault is indicated by a change in the image 
in this area. We do not expect that reflectors to the right of the fault can be imaged, 
as almost no energy from these layers is measured in the well. We observe that the 
sign of reflector five is negative, because the upgoing and downgoing waves at this 
reflector are of opposite polarity. Also, a false reflector image crosses the horizontal 
reflector five. This false image is created by the correlation of an upgoing wave and 
a surface-reverberated downgoing wave. 

In Fig. 3b we show the image based on the inversion algorithm. The residual 
source wavefield in the well for this example is shown in Fig. 5. Observe that the 
strong direct arrival does not contribute to the residual above the target zone. A 
filter that removes the low vertical wavenumbers is applied in the imaging equation 

0.0 0.5 
off set (km) 

1.0 

FIG. 4. Depth image with the U/D concept using the true velocity model. The true model is 
superimposed. The reflector positions are marked with an arrow. 



DEPTH IMAGING OF OFFSET VSP DATA 1021 

0.0 
-n  time (4 



1022 LASSE A M U N D S E N ,  B 0 R G E  A R N T S E N  A N D  R U N E  MITTET 

0.0 0.5 
offset (km) 

to 

offset (km) 
0.0 0.5 1.0 

FIG. 6. Depth image using a plane horizontally layered background velocity model, with 
layers having the correct depth and velocity in the well. The true model is superimposed. The 
reflector positions are marked with an arrow. (a) U/D imaging; (b) inversion imaging. 
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model is quite large. The image reconstruction is, of course, determined by the recei- 
ver array configuration and the source location. The partial image obtained from 
this minimal amount of data is encouraging. This processing scheme is comparable 
to processing of surface seismic prestack data from a single shot. Multiple-offset 
VSP data should be used to obtain the additional information necessary for obtain- 
ing a clearer image. 

In Fig. 6 we show the results from the second test, using a plane horizontally 
layered background velocity model, with layers that have the correct depth and 
velocity in the well. Figure 6a shows the result using the U / D  imaging algorithm. 
Compared to the previous example using the U / D  imaging concept, the image 
reconstruction is good: interfaces three to five are recovered. However, for these 
reflectors the background model is consistent with the true model. Also, the trends 
of reflectors six and seven are indicated. This example underlines the importance of 
having a good background velocity model in depth migration. 

Finally, in Fig. 6b we show the image using the inversion algorithm. Once again 
some of the structural trends are recovered. Starting with an assumption of plane 
horizontal layers, the algorithm partly restores, in one iteration, layer interfaces with 
approximately the correct dip. To some degree we can trace the fault plane, indi- 
cated by the vanishing of the two last reflectors from the bottom. Note that we are 
constructing an image proportional to the velocity perturbations, thus we will 
observe some of the plane layer background velocity model. The inversion algo- 
rithm tries to rectify the erroneous interfaces in the background model. This is most 
clearly seen on the false reflector image running through the fault plane. 

CONCLUSIONS 
We have compared two depth imaging algorithms for offset VSP data. The first one 
is based on the UID imaging concept, and requires a reasonable knowledge of the 
velocity distribution at all subsurface positions for a successful application. The 
deviation between the true and imaged reflectors in the target zone increased away 
from the well. 

Replacing the migration equations with the equations of inversion seems to be a 
good strategy for the depth imaging of offset VSP data. In the first example, imaging 
based on inversion theory was much more successful than imaging based on the 
U/D concept. In the second example the images gave nearly the same information. 
However, the inversion image contains more high frequencies due to the time deriv- 
atives appearing in (12). A reasonable image of the target region was constructed 
from only one shot. For the delineation of such a complicated structure as in this 
example, multiple offsets are important. 

Spatial aperture effects in the algorithms were not investigated. 

ACKNOWLEDGEMENTS 
We thank Eivind Berg for supplying us with the velocity model used in the numeri- 
cal examples, and Olav Holberg for the excellent design of the finite-difference oper- 
ators used in the computations. We are grateful for stimulating discussions with the 
SU(5) members Jan Helgesen and Martin Landra at IKU. 



1024 LASSE AMUNDSEN, BORGE ARNTSEN AND RUNE MITTET 

APPENDIX A 

The acoustic equations 
The material in Appendix A is well-known, but we include it for completeness. An 
excellent book for readers seeking more details is Morse and Feshbach (1953). The 
following material relies heavily on this source. 

The system of equations governing the wave motion consists of the equation of 
motion and the pressure-displacement relation (Hooke’s law), 

where p is the pressure, ui is the ith displacement component,fi is the ith component 
of the body-force distribution, p is the density, M is the bulk modulus and x is a 
shorthand notation for the Cartesian coordinates. The two first-order partial differ- 
ential equations (Ala) and (Alb) can be combined into the scalar wave equation for 
pressure 

where 

1 
f ( x ,  t)  = -ai - f;(x, t). 

P(X) 

The pressure may obey initial conditions 

p(x, t )  = 0 

a,p(x, t )  = 0 

t < 0, 
t < 0, 

or final conditions 

p(x, t )  = 0 t > T ,  

t > T ,  arp(x, t )  = 0 

where the time T is constrained to be greater than the duration of the seismic 
response. 

The Green’s function for the scalar wave equation 
The equation determining the Green’s function is 

- a: - ai - ai g(x, t I x’, t’) = 6(x - x’)6(t - t’). 
[;XI P(X) l l  
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The Green’s function satisfies the causality condition 
g(x, t I x’, t’) = 0 if t < t’, 

8, g(x, t I x’, t’) = 0 if t .c t’, (A61 
is invariant with respect to time translation (medium parameters are independent of 
time) 

g(x, t I x’, t’) = g(x, t + z I x’, t’ + z), (A71 
and, assuming homogeneous boundary conditions, the space-time reciprocity 
relationship 

g(x, t I x’, t’) = g(x’, - t’ 1 x, - t) (A8) 
is obtained. 

The adjoint Green’s function s” describes the same process as the Green’s func- 
tion g, but in reverse time order, beginning with the final distribution and going 
backwards in time to the initial source. The adjoint Green’s function is defined by 
the relationship 

g(x, - t I x’, - t’) = s”(x, t I x’, t’), (A91 
and 8 satisfies the time-reversed equation 

a: - ai - ai s“(x, t I x‘, t’) = 6(x - xy(t - t‘). [& P(X) l l  
Condition (A6) is replaced by 

Ax, tlx’, t’) = 0 if t > t’, 

dtg(x, tlx’, t’) = 0 if t > t’ 

g(x, t I x’, t’) = s”(x‘, t‘ I x, t). 
Relation (A8) now reads 

Representation theorems for the pressure 
The integral solution of the inhomogeneous scalar wave equation (A2a) in terms of 
the Green’s function g assuming initial conditions (A3) for the pressure is (Morse 
and Feshbach 1953) 

where the convolution operator (*) is defined by 

u(t) * b(t) = j;:tk(t - t’)b(t’), 
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and n, is component i of an outward-pointing unit vector orthogonal to the record- 
ing surface S bounding the volume V .  We have used the shorthand notation 8: for 
indicating that the derivative is to be taken with respect to the coordinate 5 on S.  
The normal gradients are taken in the outward direction. In the case of homoge- 
neous boundary conditions for the Green’s function and the pressure, the integral 
representation (A1 3) becomes 

The wave equation is symmetric with respect to time. This implies that the 
closed-form integral solution of the inhomogeneous scalar wave equation (A2a) in 
terms of the adjoint Green’s function invoking final conditions (A4) for the pressure 
is (Morse and Feshbach 1953) 

where the convolution operator (*) now is defined by 

The first integral in (A16) represents the effects of sinks (inverse sources). The second 
integral represents the effects of boundary conditions. Equation (A16) illustrates that 
the Green’s function is a scalar kernel of an integral operator which transforms the 
source density and boundary conditions into the solution. 

The final conditions (A4) for the pressure will, in practice, be non-zero for the 
volume covered by the seismic experiment. Since we are not able to measure this 
information, we must therefore set the final conditions to zero. The reconstruction 
of the pressure is, incorrectly, only based on the surface integral (containing measur- 
able quantities). 

In a real seismic experiment it is, of course, not possible to measure the pressure 
and its normal derivative on the whole of the closed surface S .  The fields are only 
acquired on a part of S .  In this case the closed surface integrals fs should be 
replaced by integrals along a part of the surface, js. The lack of information on the 
full surface gives rise to spatial aperture effects. 

Body-force equivalents 

We shall use the fact that boundary conditions on a surface are equivalent to 
source distributions on the surface. The first part of the surface integral in (A16) can 
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be written as 

where 

1 [af& t)ld(x - 5). 

Using 

a f g ( ~ ,  t I 5, 0) = - dV(x’)[aid(x’ - S)]~(X, t I x’, 0), 

the second part of the surface integral in (A16) becomes 
r 1 

(A18a) 

(A18b) 

(A191 

dV(x‘)&x, t I x’, 0) * f ( d ) ( ~ ’ ,  t). (A20a) 
V 

where 

(A20b) 

Thus, (A16) can be written as 

p(x, t) = bV(x.)g(x, t I x’, 0) * [ f (x ’ ,  t )  +f‘m’(x’, t )  +f(d)(X’, t)]. (A211 

Equation (A21) demonstrates that the pressure field at a coordinate (x, t) in the 
volume V may be synthesized by means of sinks in V and a monopole and a dipole 
distribution on the surface S,  enclosing V .  The strength of each monopole is given 
by the normal derivative of the pressure on S.  The strength of each dipole is given 
by the pressure field on S .  

APPENDIX B 

The gradient of the objective function 
We give a short summary of the mathematics of the inversion theory given by 

Lailly (1984) and Tarantola (1984). For completeness, we give the gradients both 
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with respect to the bulk modulus and density even though in the numerical exam- 
ples we use constant density for simplicity. 

We consider the objective function (8) for one shot position 

where the model vector is m = [MT, pTIT and Ap = p - pobs is the residual pressure 
component on S. Note that the surface integral now need not be closed: S denotes 
the receiver surface. 

In order to perform inversion using a steepest descent algorithm, the gradient of 
the objective function with respect to the model parameters is required. In contin- 
uous form, the gradient with respect to the model parameter m(x) is 

that is, the integral over the data space of the data perturbations (residuals) multi- 
plied by the FrCchet kernel 

The Frbchet kernel may be computed from the linearized forward problem, which 
has the continuous form 

that is, the integral over the model space of the model perturbations Am(x) multi- 
plied by the FrCchet kernel. Equation (B4) shows that perturbations in the model 
parameters lead to a perturbation in the field. 

The scalar wave equation is given in (A2a). A perturbation of the model param- 
eters, 

M(x) 4 M(x) + AM(x), 

P(X) + P(X) + AP(X), 

gives a perturbation of the pressure field, 

P(x, 0 + P(X, t )  + AP(X, 0. 
Neglecting higher-order terms, the pressure residuals are given by the equation 
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with initial conditions 

Ap(x, t) = 0 t < 0, 

a , A p ( ~ ,  t )  = 0 t < 0. (B5b) 
The solution of (B5a) at the receiver positions 5 in terms of the Green’s function is 
(in analogy with (A2a) and (A15)) 

By changing the order of the time integrations, interchanging t and t‘, and using the 
properties of the Green’s function, we find that 

c 

P 
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Introducing the adjoint Green's function and the convolution operator (A17) we 
have 

satisfying final conditions 

$(x, t )  = 0 

8,4(~ ,  t )  = 0 

t > T ,  

t > T ,  

and having source term 

A.f(m)(X, t )  = jdS(S)AdS, S W ( X  - 51, 

the gradients of the objective function (Bl) are 

l T  
Y M ( X )  = - 2 dtC4dx, t)lCa, $@, t)l, M (XI b 

I PT 

(BlOa) 

(Blob) 

(Blla) 

(Bllb) 

(B1 lc) 

(B12a) 

(B12b) 
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